scholarly journals Spontaneous intravenous catheter fracture and embolization from an implanted venous access port and analysis by scanning electron microscopy

Cancer ◽  
1987 ◽  
Vol 60 (2) ◽  
pp. 270-273 ◽  
Author(s):  
David Prager ◽  
Richard W. Hertzberg
2020 ◽  
Vol 9 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Ning Ai ◽  
Li Li ◽  
Fenghua Yin ◽  
Zhigang Li ◽  
Cuizhi Geng ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tomohiro Kondo ◽  
Shigemi Matsumoto ◽  
Keitaro Doi ◽  
Motoo Nomura ◽  
Manabu Muto

Abstract Background The incidence of catheter fracture after standard positioning of a totally implantable venous access port (TIVAP) is reported to be 1.1%–5.0%; however, the incidence of catheter fracture after TIVAP implantation at a femoral site remains unclear. Case presentation In a 30-year-old man with angiosarcoma of the right atrium, tumor embolism was observed from the left brachiocephalic vein to the superior vena cava. A TIVAP was implanted in the right femur. A catheter fracture was spontaneously observed after 7 months. Conclusions To the best of our knowledge, this is the first case of catheter fracture in a TIVAP implantation at a femoral site.


Author(s):  
Wala Ben Kridis ◽  
Nabil Toumi ◽  
Afef Khanfir

A totally implantable venous access port (TIVAP) plays a crucial role in the treatment of patients in oncology. Catheter fracture is a serious complication with an estimated incidence of 0, 1% - 1%. The objective of this systematic review is to analyze the mechanism of TIVAP fracture to make physicians aware of this fatal entity. A search of the literature between 1980 and 2019 was conducted using PubMed, Ovid, MEDLINE, and Cochrane Systematic Review databases. The search identified 18 case reports and 8 retrospective studies. Fracture of the middle part of the catheter may be induced by constant compression of the catheter between the first-rib and clavicle, which is called the pinch-off syndrome. Catheter fracture at the port-catheter junction may be caused by extrinsic compression near the port-catheter junction combined with material fatigue due to repeated bending of the catheter with shoulder movement. There is no specific cause for the fracture of a catheter tip. An annual chest X-ray is recommended for the early detection of TIVAP catheter fracture. Percutaneous endovascular retrieval of a dislodged Port-A catheter is both safe and effective. © 2019 Tehran University of Medical Sciences. All rights reserved. Acta Med Iran 2020;57(12):686-689.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Sign in / Sign up

Export Citation Format

Share Document